Tuyển Sinh 2022-2023

American Mathematical Monthly Problem - Volume 128, 2021

  1. Proposed by Michael Elgersma, Plymouth, MN, and James R. Roche, Ellicott City, MD. Two weighted $m$-sided dice have faces labeled with the integers 1 to $m$. The first die shows the integer $i$ with probability $p_{i}$, while the second die shows the integer $i$ with probability $r_{i}$. Alice rolls the two dice and sums the resulting integers; Bob then independently does the same.
    a) For each $m$ with $m \geq 2$, find the probability vectors $\left(p_{1}, \ldots, p_{m}\right)$ and $\left(r_{1}, \ldots, r_{m}\right)$ that minimize the probability that Alice's sum equals Bob's sum.
    b) Generalize to $n$ dice, with $n \geq 3$.
  2. Proposed by Cherng-tiao Perng, Norfolk State University, Norfolk, VA. Let $A B C$ be a triangle, with $D$ and $E$ on $A B$ and $A C$, respectively. For a point $F$ in the plane, let $D F$ intersect $B C$ at $G$ and let $E F$ intersect $B C$ at $H$. Furthermore, let $A F$ intersect $B C$ at $I$, let $D H$ intersect $E G$ at $J$, and let $B E$ intersect $C D$ at $K$. Prove that $I, J$, and $K$ are collinear.
  3. Proposed by Pakawut Jiradilok, Massachusetts Institute of Technology, Cambridge, MA, and Wijit Yangjit, University of Michigan, Ann Arbor, MI. Let $\Gamma$ denote the gamma function, defined by $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t$ for $x>0$.
    a) Prove that $\lceil\Gamma(1 / n)\rceil=n$ for every positive integer $n$, where $\lceil y\rceil$ denotes the smallest integer greater than or equal to $y$.
    b) Find the smallest constant $c$ such that $\Gamma(1 / n) \geq n-c$ for every positive integer $n$.
  4. Proposed by Jovan Vukmirovic, Belgrade, Serbia. Let $x_{1}, x_{2}$, and $x_{3}$ be real numbers, and define $x_{n}$ for $n \geq 4$ recursively by $x_{n}=\max \left\{x_{n-3}, x_{n-1}\right\}-x_{n-2}$. Show that the sequence $x_{1}, x_{2}, \ldots$ is either convergent or eventually periodic, and find all triples $\left(x_{1}, x_{2}, x_{3}\right)$ for which it is convergent.
  5. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Prove that for any integer $n$ with $n \geq 3$ there exist infinitely many pairs ( $A, B)$ such that $A$ is a set of $n$ consecutive positive integers, $B$ is a set of fewer than $n$ positive integers, $A$ and $B$ are disjoint, and $\sum_{k \in A} 1 / k=\sum_{k \in B} 1 / k$.
  6. Proposed by Hervé Grandmontagne, Paris, France. Prove $$\int_{0}^{1} \frac{(\ln x)^{2} \ln \left(2 \sqrt{x} /\left(x^{2}+1\right)\right)}{x^{2}-1} d x=2 G^{2},$$ where $G$ is Catalan's constant $\sum_{n=0}^{\infty}(-1)^{n} /(2 n+1)^{2}$.
  7. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function that has a continuous second derivative and that satisfies $f(0)=f(1)$ and $\int_{0}^{1} f(x) d x=0$. Prove $$30240\left(\int_{0}^{1} x f(x) d x\right)^{2} \leq \int_{0}^{1}\left(f^{\prime \prime}(x)\right)^{2} d x .$$
  8. Proposed by David Callan, University of Wisconsin, Madison, WI. Let $[n]=$ $\{1, \ldots, n\}$. Given a permutation $\left(\pi_{1}, \ldots, \pi_{n}\right)$ of $[n]$, a right-left minimum occurs at position $i$ if $\pi_{j}>\pi_{i}$ whenever $j>i$, and a small ascent occurs at position $i$ if $\pi_{i+1}=\pi_{i}+1$. Let $A_{n, k}$ denote the set of permutations $\pi$ of $[n]$ with $\pi_{1}=k$ that do not have right-left minima at consecutive positions, and let $B_{n, k}$ denote the set of permutations $\pi$ of $[n]$ with $\pi_{1}=k$ that have no small ascents.
    a) Prove $\left|A_{n, k}\right|=\left|B_{n, k}\right|$ for $1 \leq k \leq n$.
    b) Prove $\left|A_{n, j}\right|=\left|A_{n, k}\right|$ for $2 \leq j<k \leq n$.
  9. Proposed by George Apostolopoulos, Messolonghi, Greece. For an acute triangle $A B C$ with circumradius $R$ and inradius $r$, prove $$\sec \left(\frac{A-B}{2}\right)+\sec \left(\frac{B-C}{2}\right)+\sec \left(\frac{C-A}{2}\right) \leq \frac{R}{r}+1 .$$
  10. Proposed by Seán Stewart, Bomaderry, Australia. Prove $$\int_{0}^{1} \int_{0}^{1} \frac{1}{\sqrt{x(1-x)} \sqrt{y(1-y)} \sqrt{1-x y}} d x d y=\frac{1}{4 \pi}\left(\int_{0}^{\infty} e^{-t} t^{-3 / 4} d t\right)^{4} .$$
  11. Proposed by C. R. Pranesachar, Indian Institute of Science, Bengaluru, India. Let $n$ and $k$ be positive integers with $1 \leq k \leq(n+1) / 2$. For $1 \leq r \leq n$, let $h(r)$ be the number of $k$-element subsets of $\{1, \ldots, n\}$ that do not contain consecutive elements but that do contain $r$. For example, with $n=7$ and $k=3$, the string $h(1), \ldots, h(7)$ is $6,3,4,4,4,3,6$. Prove
    a) $h(r)=h(r+1)$ when $r \in\{k, \ldots, n-k\}$.
    b) $h(k-1)=h(k) \pm 1$.
    c) $h(r)>h(r+2)$ when $r \in\{1, \ldots, k-2\}$ and $r$ is odd.
    d) $h(r)<h(r+2)$ when $r \in\{1, \ldots, k-2\}$ and $r$ is even.
  12. Proposed by Nicolai Osipov, Siberian Federal University, Krasnoyarsk, Russia. Let $p$ be an odd prime, and let $A x^{2}+B x y+C y^{2}$ be a quadratic form with $A, B$, and $C$ in $\mathbb{Z}$ such that $B^{2}-4 A C$ is neither a multiple of $p$ nor a perfect square modulo $p$. Prove that $$\prod_{0<x<y<p}\left(A x^{2}+B x y+C y^{2}\right)$$ is $1$ modulo $p$ if exactly one or all three of $A$, $C$, and $A+B+C$ are perfect squares modulo $p$ and is $-1$ modulo $p$ otherwise.
  13. Proposed by George Stoica, Saint John, $N B$, Canada. Let $a_{0}, a_{1}, \ldots$ be a sequence of real numbers tending to infinity, and let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function satisfying $$\left|f^{(n)}\left(a_{k}\right)\right| \leq e^{-a_{k}}$$ for all nonnegative integers $k$ and $n$. Prove $f(z)=c e^{-z}$ for some constant $c \in \mathbb{C}$ with $|c| \leq 1$.
  14. Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran. Let $p_{k}$ be the $k$ th prime number, and let $a_{n}=\prod_{k=1}^{n} p_{k}$. Prove that for $n \in \mathbb{N}$ every positive integer less than $a_{n}$ can be expressed as a sum of at most $2 k$ distinct divisors of $a_{n}$.
  15. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Let $x_{0}=1$ and $x_{n+1}=x_{n}+\left\lfloor x_{n}^{3 / 10}\right\rfloor$ for $n \geq 0$. What are the first 40 decimal digits of $x_{n}$ when $n=10^{100} ?$.
  16. Proposed by Tran Quang Hung, Hanoi, Vietnam. Let $A B C D$ be a convex quadrilateral with $A D=B C$. Let $P$ be the intersection of the diagonals $A C$ and $B D$, and let $K$ and $L$ be the circumcenters of triangles $P A D$ and $P B C$, respectively. Show that the midpoints of segments $A B, C D$, and $K L$ are collinear.
  17. Proposed by David Altizio, University of Illinois, Urbana, IL. Determine all positive integers $r$ such that there exist at least two pairs of positive integers $(m, n)$ satisfying the equation $2^{m}=n !+r$.
  18. Proposed by Yue Liu, Fuzhou University, Fuzhou, China, and Fuzhen Zhang, Nova Southeastern University, Fort Lauderdale, FL. We denote by $A^{*}$ the conjugate transpose of the matrix $A$.
    a) Let $x \in \mathbb{C}^{m}$ be a unit column vector. Find the eigenvalues of the $(m+1)$-by- $(m+1)$ matrices $$\left[\begin{array}{cc} x^{*} x & x^{*} \\ x & 0 \end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc} x x^{*} & x \\ x^{*} & 0\end{array}\right]$$ b) More generally, let $X$ be an $m$-by-n complex matrix, and let $\rho$ be any real number. Find the eigenvalues of the $(m+n)$-by- $(m+n)$ matrices $$\left[\begin{array}{cc} X^{*} X & X^{*} \\ X & \rho I_{m} \end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}X X^{*} & X \\ X^{*} & \rho I_{n}\end{array}\right]$$
  19. Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of ClujNapoca, Cluj-Napoca, Romania. Prove $$\sum_{n=1}^{\infty}(-1)^{n} n\left(\frac{1}{4 n}-\ln 2+\sum_{k=n+1}^{2 n} \frac{1}{k}\right)=\frac{\ln 2-1}{8}$$
  20. Proposed by Elena Corobea, Technical College Carol I, Constanţa, Romania. For $n \geq 1$, let $$I_{n}=\int_{0}^{1} \frac{\left(\sum_{k=0}^{n} x^{k} /(2 k+1)\right)^{2022}}{\left(\sum_{k=0}^{n+1} x^{k} /(2 k+1)\right)^{2021}} d x .$$ Let $L=\lim _{n \rightarrow \infty} I_{n}$. Compute $L$ and $\lim _{n \rightarrow \infty} n\left(I_{n}-L\right)$.
  21. Proposed by $M$. L. Glasser, Clarkson University, Potsdam, NY. For $a>0$, evaluate $$\int_{0}^{a} \frac{t}{\sinh t \sqrt{1-\operatorname{csch}^{2} a \cdot \sinh ^{2} t}} d t .$$
  22. Proposed by Rob Pratt, SAS Institute Inc., Cary, NC, Stan Wagon, Macalester College, St. Paul, MN, Douglas B. West, University of Illinois, Urbana, IL, and Piotr Zielinski, Cambridge, MA. A polyomino is a region in the plane with connected interior that is the union of a finite number of squares from a grid of unit squares. For which integers $k$ and $n$ with $4 \leq k \leq n$ does there exist a polyomino $P$ contained entirely within an $n$-by- $n$ grid such that $P$ contains exactly $k$ unit squares in every row and every column of the grid? Clearly such polyominos do not exist when $k=1$ and $n \geq 2$. Nikolai Beluhov noticed that they do not exist when $k=2$ and $n \geq 3$, and his Problem 12137 [2019, 756; 2021, 381], whose solution appears at the end of this column, shows that they do not exist when $k=3$ and $n \geq 5$.
  23. Proposed by Jiahao Chen, Tsinghua University, Beijing, China. Suppose that two circles $\alpha$ and $\beta$, with centers $P$ and $Q$, respectively, intersect orthogonally at $A$ and $B$. Let $C D$ be a diameter of $\beta$ that is exterior to $\alpha$. Let $E$ and $F$ be points on $\alpha$ such that $C E$ and $D F$ are tangent to $\alpha$, with $C$ and $E$ on one side of $P Q$ and $D$ and $F$ on the other side of $P Q$. Let $S$ be the intersection of $C F$ and $Q A$, and let $T$ be the intersection of $D E$ and $Q B$. Prove that $S T$ is parallel to $C D$.
  24. Proposed by Seán Stewart, Bomaderry, Australia. Let $\zeta$ be the Riemann zeta function, defined for $n \geq 2$ by $\zeta(n)=\sum_{k=1}^{\infty} 1 / k^{n}$. Let $H_{n}$ be the $n$th harmonic number, defined by $H_{n}=\sum_{k=1}^{n} 1 / k$. Prove $$\sum_{n=2}^{\infty} \frac{\zeta(n)}{n^{2}}+\sum_{n=2}^{\infty}(-1)^{n} \frac{\zeta(n) H_{n}}{n}=\frac{\pi^{2}}{6} .$$
  25. Proposed by Prathap Kasina Reddy, Bhabha Atomic Research Centre, Mumbai, India. For positive real constants $a, b$, and $c$, prove $$\int_{0}^{\pi} \int_{0}^{\infty} \frac{a}{\pi\left(x^{2}+a^{2}\right)^{3 / 2}} \frac{x}{\sqrt{x^{2}+b^{2}+c^{2}-2 c x \cos \theta}} d x d \theta=\frac{1}{\sqrt{(a+b)^{2}+c^{2}}} .$$
  26. Proposed by Askar Dzhumadil'daev, Almaty, Kazakhstan. Let $n$ be a positive integer, and let $x_{k}$ be a real number for $1 \leq k \leq 2 n$. Let $C$ be the $2 n$-by-2n skew-symmetric matrix with $i, j$-entry $\cos \left(x_{i}-x_{j}\right)$ when $1 \leq i<j \leq 2 n$. Prove $$\operatorname{det}(C)=\cos ^{2}\left(x_{1}-x_{2}+x_{3}-x_{4}+\cdots+x_{2 n-1}-x_{2 n}\right) .$$
  27. Proposed by Florin Stanescu, Serban Cioculescu School, Gaesti, Romania. Prove $$\sum_{k=\lfloor n / 2\rfloor}^{n-1} \sum_{m=1}^{n-k}(-1)^{m-1} \frac{k+m}{k+1}\left(\begin{array}{c}k+1 \\m-1 \end{array}\right) 2^{k-m}=\frac{n}{2}$$ for any positive integer $n$.
  28. Proposed by Dorin Mărghidanu, Colegiul National A. I. Cuza, Corabia, Romania. With $n \geq 4$, let $a_{1}, \ldots, a_{n}$ be the lengths of the sides of a polygon. Prove $$\sqrt{\frac{a_{1}}{-a_{1}+a_{2}+\cdots+a_{n}}}+\sqrt{\frac{a_{2}}{a_{1}-a_{2}+\cdots+a_{n}}}+\cdots+\sqrt{\frac{a_{n}}{a_{1}+a_{2}+\cdots-a_{n}}}>\frac{2 n}{n-1} .$$
  29. Proposed by Roberto Tauraso, Università di Roma "Tor Vergata," Rome, Italy. Each point in the plane is colored either red or blue. Show that for any positive real number $S$, there is a proper convex pentagon of area $S$ all five of whose vertices have the same color. (By a proper convex pentagon we mean a convex pentagon whose internal angles are less than $\pi$.)
  30. Proposed by Nguyen Quang Minh, Saint Joseph's Institution, Singapore. Let $k$, $q$, and $n$ be positive integers with $k \geq 2$, and let $P$ be the set of positive integers less than $k^{n}$ that are not divisible by $k$. Prove $$\sum_{p \in P}\left[\frac{\left\lfloor n-\log _{k} p\right\rfloor}{q}\right\rceil=\left\lfloor\frac{k^{q-1}\left(k^{n-1}-1\right)(k-1)}{k^{q}-1}\right\rfloor+1 .$$
  31. Proposed by Alexandru Gîrban, Constanţa, Romania, and Bogdan D. Suceavă, Fullerton, CA. Let $A B C$ be a triangle, and let $D$ and $E$ be the contact points of the incircle of $A B C$ with the segments $B C$ and $C A$, respectively. Let $M$ be the intersection of the line $D E$ and the line through $A$ parallel to $B C$. Prove that the bisector of $\angle A B C$ passes through the midpoint of $D M$.
  32. Proposed by Cezar Lupu, Texas Tech University, Lubbock, TX, and Tudorel Lupu, Constanta, Romania. Prove $$\sum_{n=0}^{\infty}\left(\frac{(-1)^{n}}{2 n+1} \sum_{k=1}^{n} \frac{1}{n+k}\right)=\frac{3 \pi}{8} \log 2-G$$ where $G$ is Catalan's constant $\sum_{k=0}^{\infty}(-1)^{k} /(2 k+1)^{2}$.
  33. Proposed by Besfort Shala, student, University of Primorska, Koper, Slovenia. Given a positive integer $a_{0}$, define $a_{1}, \ldots, a_{n}$ recursively by $a_{i}=1^{2}+2^{2}+\cdots+a_{i-1}^{2}$ for $i \geq 1$. Is it true that, given any subset $A$ of $\{1, \ldots, n\}$, there is a positive integer $a_{0}$ such that, for $1 \leq i \leq n, 6$ divides $a_{i}$ if and only if $i \in A$ ?
  34. Proposed by Paul Bracken, University of Texas, Edinburg, TX. Prove $$\int_{0}^{1} \frac{\log (1+x) \log (1-x)}{x} d x=-\frac{5}{8} \zeta(3),$$ where $\zeta$ (3) is Apéry's constant $\sum_{n=1}^{\infty} 1 / n^{3}$.
  35. Proposed by Erich Friedman, Stetson University, DeLand, FL, and James Tilley, Bedford Corners, NY. An arrangement of equilateral triangles in the plane is called saturated if the intersection of any two is either empty or is a common vertex and every vertex is shared by exactly two triangles. What is the smallest positive integer $n$ such that there exists a saturated arrangement of $n$ equilateral triangles with integer length sides?
  36. Proposed by Jeffrey $C$. Lagarias, University of Michigan, Ann Arbor, MI. Let $S$ be the set of positive integers $n$ such that $n$ ! is not the sum of three squares. Show that $S$ has bounded gaps, i.e., there is a positive constant $C$ such that for every positive integer $n$, there is an element of $S$ between $n$ and $n+C$.
  37. Proposed by Giuseppe Fera, Vicenza, Italy. A triangle is Heronian if it has integer sides and integer area. A pair of noncongruent Heronian triangles is called a supplementary pair if the triangles have the same perimeter and the same area and some interior angle of one is the supplement of some interior angle of the other. Prove that there are infinitely many supplementary pairs of Heronian triangles.
  38. Proposed by Seán M. Stewart, Bomaderry, Australia. Prove $$\int_{0}^{\infty} \frac{\sin ^{2} x-x \sin x}{x^{3}} d x=\frac{1}{2}-\log 2$$
  39. Proposed by Albert Stadler, Herrliberg, Switzerland. Let $a_{n}$ be the number of equilateral triangles whose vertices are chosen from the vertices of the $n$-dimensional cube. Compute $\lim _{n \rightarrow \infty} n a_{n} / 8^{n}$.
  40. Proposed by Li Zhou, Polk State College, Winter Haven, FL. For a nonnegative integer $m$, let $$A_{m}=\sum_{k=0}^{\infty}\left(\frac{1}{(6 k+1)^{2 m+1}}-\frac{1}{(6 k+5)^{2 m+1}}\right)$$ Prove $A_{0}=\pi \sqrt{3} / 6$ and, for $m \geq 1$, $$2 A_{m}+\sum_{n=1}^{m} \frac{(-1)^{n} \pi^{2 n}}{(2 n) !} A_{m-n}=\frac{(-1)^{m}\left(4^{m}+1\right) \sqrt{3}}{2(2 m) !}\left(\frac{\pi}{3}\right)^{2 m+1}$$
  41. Proposed by Dong Luu, Hanoi National University of Education, Hanoi, Vietnam. In triangle $A B C$, let $D, E$, and $F$ be the points at which the incircle of $A B C$ touches the sides $B C, C A$, and $A B$, respectively. Let $D^{\prime}, E^{\prime}$, and $F^{\prime}$ be three other points on the incircle with $E^{\prime}$ and $F^{\prime}$ on the minor arc $E F$ and $D^{\prime}$ on the major arc $E F$ and such that $A D^{\prime}, B E^{\prime}$, and $C F^{\prime}$ are concurrent. Let $X, Y$, and $Z$ be the intersections of lines $E F$ and $E^{\prime} F^{\prime}$, lines $F D$ and $F^{\prime} D^{\prime}$, and lines $D E$ and $D^{\prime} E^{\prime}$, respectively. Prove that $A X, B Y$, and $C Z$ are either concurrent or parallel.
  42. Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran. Let $P_{d}$ be the set of all polynomials of the form $\sum_{0 \leq i, j \leq d} a_{i, j} x^{i} y^{j}$ with $a_{i, j} \in\{1,-1\}$ for all $i$ and $j$. Prove that there is a positive integer $d$ such that more than 99 percent of the elements of $P_{d}$ are irreducible in the ring of polynomials with integer coefficients.
  43. Proposed by Ross Dempsey, student, Princeton University, Princeton, NJ. For a fixed positive integer $k$, let $a_{0}=a_{1}=1$ and $a_{n}=a_{n-1}+(k-n)^{2} a_{n-2}$ for $n \geq 2$. Show that $a_{k}=(k-1)$ !.
  44. Proposed by Haoran Chen, Xi'an Jiaotong-Liverpool University, Suzhou, China. A union of a finite number of squares from a grid is called a polyomino if its interior is simply connected. Given a polyomino $P$ and a subpolyomino $Q$, we write $c(P, Q)$ for the number of components that remain when $Q$ is removed from $P$. Let $f(k)=\max _{P} \min _{Q} c(P, Q)$, where the maximum is taken over all polyominoes and the minimum is taken over all subpolyominoes $Q$ of $P$ of size $k$. For example, $f(2) \geq 3$, because any domino removed from the pentomino at right breaks the pentomino into 3 pieces. Is $f$ bounded?
  45. Proposed by Michel Bataille, Rouen, France. Let $x, y$, and $z$ be nonnegative real numbers such that $x+y+z=1$. Prove $$\begin{aligned}&(1-x) \sqrt{x(1-y)(1-z)}+(1-y) \sqrt{y(1-z)(1-x)}+(1-z) \sqrt{z(1-x)(1-y)} \\ &\geq 4 \sqrt{x y z} .\end{aligned}$$
  46. Proposed by Samina Boxwala Kale, Nowrosjee Wadia College, Pune, India, Vašek Chvátal, Concordia University, Montreal, Canada, Donald E. Knuth, Stanford University, Stanford, CA, and Douglas B. West, University of Illinois, Urbana, IL.
    a) Show that there is an easy way to decide whether the edges of a graph can each be colored red or green so that at each vertex the number of incident edges with one color differs from the number having the other color by at most $1$.
    b) Show that it is NP-hard to decide whether the vertices of a graph can each be colored red or green so that at each vertex the number of neighboring vertices with one color differs from the number having the other color by at most 1 .
  47. Proposed by Mehmet Şahin and Ali Can Güllü, Ankara, Turkey. Let $A B C$ be an acute triangle. Suppose that $D$, $E$, and $F$ are points on sides $B C, C A$, and $A B$, respectively, such that $F D$ is perpendicular to $B C, D E$ is perpendicular to $C A$, and $E F$ is perpendicular to $A B$. Prove $$\frac{A F}{A B}+\frac{B D}{B C}+\frac{C E}{C A}=1$$
  48. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let $a_{0}=1$, and let $a_{n+1}=a_{n}+e^{-a_{n}}$ for $n \geq 0$. Show that the sequence whose $n$th term is $e^{a_{n}}-n-(1 / 2) \ln n$ converges.
  49. Proposed by Steven Deckelman, University of Wisconsin-Stout, Menomonie, WI. Let $n$ be a positive integer. Evaluate $$\int_{0}^{2 \pi}\left|\sin \left((n-1) \theta-\frac{\pi}{2 n}\right) \cos (n \theta)\right| d \theta .$$
  50. Proposed by H. A. ShahAli, Tehran, Iran, and Stan Wagon, Macalester College, St. Paul, MN.
    a) For which integers $n$ with $n \geq 3$ do there exist distinct positive integers $a_{1}, \ldots, a_{n}$ such that $a_{i}+a_{i+1}$ is a power of 2 for all $i \in\{1, \ldots, n\}$ ? (Here subscripts are taken modulo $n$, so that $a_{n+1}=a_{1}$.)
    b) What is the answer if the word "positive" is removed from part (a)?
  51. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let $\zeta$ be the Riemann zeta function, defined by $\zeta(s)=\sum_{k=1}^{\infty} 1 / k^{s}$. For $s>1$, prove the following inequalities $$\sum_{\text {prime } p} \frac{1}{p^{s}-0.5}<\log \zeta(s), \quad \sum_{\text {prime } p} \frac{1}{p^{s}}<\log \frac{\zeta(s)}{\sqrt{\zeta(2 s)}}, \quad \sum_{\text {prime } p} \frac{1}{p^{s}+0.5}<\log \frac{\zeta(s)}{\zeta(2 s)}.$$
  52. Proposed by Roberto Tauraso, Università di Roma "Tor Vergata," Rome, Italy. Evaluate $$\int_{0}^{1} \frac{\arctan x}{1+x^{2}}\left(\ln \left(\frac{2 x}{1-x^{2}}\right)\right)^{2} d x$$
  53. Proposed by Yun Zhang, Xi'an, China. Let $x, y$, and $z$ be positive real numbers with $x+y+z=3$. Prove each of the following inequalities.
    a) $x^{5} y^{5} z^{5}\left(x^{4}+y^{4}+z^{4}\right) \leq 3$.
    b)  $x^{8} y^{8} z^{8}\left(x^{5}+y^{5}+z^{5}\right) \leq 3$.
    c) $x^{11} y^{11} z^{11}\left(x^{6}+y^{6}+z^{6}\right) \leq 3$.
    d) $x^{16} y^{16} z^{16}\left(x^{7}+y^{7}+z^{7}\right) \leq 3$.
  54. Proposed by Joe Santmyer, Las Cruces, NM. Prove $$\sum_{n=2}^{\infty} \frac{1}{n+1} \sum_{i=1}^{\lfloor n / 2\rfloor} \frac{1}{2^{i-1}(i-1) !(n-2 i) !}=1$$
  55. Proposed by Cristian Chiser, Elena Cuza College, Craiova, Romania. Let $A, B$, and $C$ be three pairwise commuting 2 -by-2 real matrices. Show that if at least one of the matrices $A-B, B-C$, and $C-A$ is invertible, then the matrix $$A^{2}+B^{2}+C^{2}-A B-A C-B C$$ cannot have rank $1 .$
  56. Proposed by Dao Thanh Oai, Thai Binh, Vietnam. Let $A B C$ be a scalene triangle, and let its external angle bisectors at $A, B$, and $C$ meet $B C$, $C A$, and $A B$ at $D$, $E$, and $F$, respectively. Let $l, m$, and $n$ be lines through $D$, $E$, and $F$ that (internally) trisect angles $\angle A D B, \angle B E C$, and $\angle C F A$, respectively, with the angle between $l$ and $A D$ equal to $1 / 3$ of $\angle A D B$, the angle between $m$ and $B E$ equal to $1 / 3$ of $\angle B E C$, and the angle between $n$ and $C F$ equal to $1 / 3$ of $\angle C F A$.
    a) Show that $l, m$, and $n$ form an equilateral triangle.
    b) The lines $l, m$, and $n$ each intersect $A D, B E$, and $C F$. Of these nine points of intersection, three are the points $D, E$, and $F$. Show that the other six lie on a circle.
  57. Proposed by Brad Isaacson, Brooklyn, NY. Let $S(m, k)$ denote the number of partitions of a set with $m$ elements into $k$ nonempty blocks. (These are the Stirling numbers of the second kind.) Let $j$ and $n$ be positive integers of opposite parity with $j<n$. Prove $$ \sum_{r=j}^{n} \frac{(-1)^{r}(r-1) !\left(\begin{array}{c} r \\ j \end{array}\right) S(n, r)}{2^{r}}=0 .$$
  58. Proposed by Nguyen Duc Toan, Da Nang, Vietnam. Let $A B C$ be an acute scalene triangle with circumcenter $O$ and orthocenter $H$. Let $M$ and $R$ be the midpoints of segments $B C$ and $O H$, respectively, let $S$ be the reflection across $B C$ of the circumcenter of triangle $B O C$, and let $T$ be the second point of intersection of the circumcircle of triangle $B H C$ and line $O H$. Prove that $M, R, S$, and $T$ are concyclic.
  59. Proposed by Paolo Perfetti, Università di Roma "Tor Vergata," Rome, Italy. Evaluate $$\int_{0}^{\infty}\left(\frac{\cosh x}{\sinh ^{2} x}-\frac{1}{x^{2}}\right)(\ln x)^{2} d x .$$
  60. Proposed by George Stoica, Saint John, NB, Canada. Prove that the multiplicative group generated by $\left\{\lfloor\sqrt{2} n\rfloor / n: n \in \mathbb{Z}^{+}\right\}$is the group of positive rational numbers.
  61. Proposed by Yongge Tian, Shanghai Business School, Shanghai, China. Let $A$ and $B$ be two $n$-by- $n$ matrices that are orthogonal projections, that is, $A^{2}=A=A^{*}$ and $B^{2}=$ $B=B^{*}$. Let $\sqrt{A+B}$ denote the positive semidefinite square root of $A+B$. Prove $$\begin{aligned}\operatorname{trace}(A+B)-(2-\sqrt{2}) \operatorname{rank}(A B) & \leq \operatorname{trace} \sqrt{A+B} \\ & \leq (\sqrt{2}-1) \operatorname{trace}(A+B)+(2-\sqrt{2}) \operatorname{rank}(A+B),\end{aligned}$$ and show that equality holds simultaneously if and only if $A B=B A$.
  62. Proposed by Zachary Franco, Houston, TX. Let $A B C$ be a triangle with circumcenter $O$, incenter $I$, orthocenter $H$, sides of integer length, and perimeter 2021. Suppose that the perpendicular bisector of $O H$ contains $A$ and $I$. Find the length of $B C$.
  63. Proposed by Atul Dixit, Indian Institute of Technology, Gandhinagar, India. Prove $$\sum_{m=1}^{\infty} \int_{0}^{\infty} \frac{t \cos t}{t^{2}+m^{2} u^{2}} d t=\int_{0}^{\infty}\left(-\frac{\pi}{2 u} \cos t+\sum_{m=1}^{\infty} \frac{t \cos t}{t^{2}+m^{2} u^{2}}\right) d t$$for $u>0$.
  64. Proposed by Ira Gessel, Brandeis University, Waltham, MA. Let $p$ be a prime number, and let $m$ be a positive integer not divisible by $p$. Show that the coefficients of $\left(1+x+\cdots+x^{m-1}\right)^{p-1}$ that are not divisible by $p$ are alternately 1 and $-1$ modulo $p$. For example, $\left(1+x+x^{2}+x^{3}\right)^{4} \equiv 1-x+x^{4}-x^{6}+x^{8}-x^{11}+x^{12}(\bmod 5)$.
  65. Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of ClujNapoca, Cluj-Napoca, Romania. Prove $$\sum_{n=1}^{\infty}\left(n\left(\sum_{k=n}^{\infty} \frac{1}{k^{2}}\right)^{2}-\frac{1}{n}\right)=\frac{3}{2}-\frac{1}{2} \zeta(2)+\frac{3}{2} \zeta(3),$$ where $\zeta$ is the Riemann zeta function, defined by $\zeta(s)=\sum_{k=1}^{\infty} 1 / k^{s}$.
  66. Proposed by Seán Stewart, Bomaderry, Australia. Prove $$\int_{0}^{\infty}\left(1-x^{2} \sin ^{2}\left(\frac{1}{x}\right)\right)^{2} d x=\frac{\pi}{5}$$
  67. Proposed by George E. Andrews, Pennsylvania State University, University Park, PA, and Mircea Merca, University of Craiova, Craiova, Romania. Prove $$\sum_{n=0}^{\infty} 2 \cos \left(\frac{(2 n+1) \pi}{3}\right) q^{n(n+1) / 2}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-q^{6 n-1}\right)\left(1-q^{6 n-5}\right),$$ when $|q|<1$.
  68. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. Find all analytic functions $f: \mathbb{C} \rightarrow \mathbb{C}$ that satisfy $$|f(x+i y)|^{2}=|f(x)|^{2}+|f(i y)|^{2}$$ for all real numbers $x$ and $y$.
  69. Proposed by Leonard Giugiuc, Drobeta Turnu Severin, Romania, and Petru Braica, Satu Mare, Romania. The Nagel point of a triangle is the point common to the three segments that join a vertex of the triangle to the point at which an excircle touches the opposite side. Let $A B C$ be a triangle with incenter $I$ and Nagel point $J$. Prove that $A J$ is perpendicular to the line through the orthocenters of triangles $I A B$ and $I A C$.
  70. Proposed by Nikolai Osipov, Siberian Federal University, Krasnoyarsk, Russia. Let $p$ be a prime number, and let $r=1 /(2 \cos (4 \pi / 7))$. Evaluate $\left\lfloor r^{p+2}\right\rfloor$ modulo $p$.
MOlympiad.NET rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc LIÊN HỆ
[email protected]
You can use $\LaTeX$ in comment




Name

Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên SP TPHCM Chuyên SPHN Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Dương Quỳnh Châu Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 2015-2016 HSG 10 2022-2023 HSG 10 Bà Rịa Vũng Tàu HSG 10 Bắc Giang HSG 10 Bạc Liêu HSG 10 Bắc Ninh HSG 10 Bình Định HSG 10 Bình Dương HSG 10 Bình Thuận HSG 10 Chuyên SPHN HSG 10 Đắk Lắk HSG 10 Đồng Nai HSG 10 Gia Lai HSG 10 Hà Nam HSG 10 Hà Tĩnh HSG 10 Hải Dương HSG 10 KHTN HSG 10 Nghệ An HSG 10 Phú Yên HSG 10 Thái Nguyên HSG 10 Thanh Hóa HSG 10 Trà Vinh HSG 10 Vĩnh Phúc HSG 11 HSG 11 2011-2012 HSG 11 2012-2013 HSG 11 Bà Rịa Vũng Tàu HSG 11 Bắc Giang HSG 11 Bạc Liêu HSG 11 Bắc Ninh HSG 11 Bình Định HSG 11 Bình Dương HSG 11 Bình Thuận HSG 11 Cà Mau HSG 11 Đà Nẵng HSG 11 Đồng Nai HSG 11 Hà Nam HSG 11 Hà Tĩnh HSG 11 Hải Phòng HSG 11 HSG 12 Quảng Ngãi HSG 11 Lạng Sơn HSG 11 Nghệ An HSG 11 Ninh Bình HSG 11 Thái Nguyên HSG 11 Thanh Hóa HSG 11 Trà Vinh HSG 11 Vĩnh Long HSG 11 Vĩnh Phúc HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 An Giang HSG 12 Bà Rịa Vũng Tàu HSG 12 Bắc Giang HSG 12 Bạc Liêu HSG 12 Bắc Ninh HSG 12 Bến Tre HSG 12 Bình Định HSG 12 Bình Dương HSG 12 Bình Phước HSG 12 Bình Thuận HSG 12 Cà Mau HSG 12 Cần Thơ HSG 12 Cao Bằng HSG 12 Chuyên SPHN HSG 12 Đà Nẵng HSG 12 Đắk Lắk HSG 12 Đắk Nông HSG 12 Đồng Nai HSG 12 Đồng Tháp HSG 12 Gia Lai HSG 12 Hà Nam HSG 12 Hà Tĩnh HSG 12 Hải Dương HSG 12 Hải Phòng HSG 12 Hòa Bình HSG 12 Khánh Hòa HSG 12 KHTN HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Nam Định HSG 12 Nghệ An HSG 12 Ninh Bình HSG 12 Phú Yên HSG 12 Quảng Nam HSG 12 Quảng Ngãi HSG 12 Quảng Ninh HSG 12 Sơn La HSG 12 Tây Ninh HSG 12 Thái Nguyên HSG 12 Thanh Hóa HSG 12 Thừa Thiên Huế HSg 12 Tiền Giang HSG 12 TPHCM HSG 12 Vĩnh Long HSG 12 Vĩnh Phúc HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 2022-2023 HSG 9 An Giang HSG 9 Bà Rịa Vũng Tàu HSG 9 Bắc Giang HSG 9 Bắc Ninh HSG 9 Bến Tre HSG 9 Bình Định HSG 9 Bình Dương HSG 9 Bình Phước HSG 9 Bình Thuận HSG 9 Cà Mau HSG 9 Cao Bằng HSG 9 Đà Nẵng HSG 9 Đắk Lắk HSG 9 Đắk Nông HSG 9 Đồng Nai HSG 9 Đồng Tháp HSG 9 Gia Lai HSG 9 Hà Giang HSG 9 Hà Nam HSG 9 Hà Tĩnh HSG 9 Hải Dương HSG 9 Hải Phòng HSG 9 Hòa Bình HSG 9 Khánh Hòa HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Nam Định HSG 9 Nghệ An HSG 9 Ninh Bình HSG 9 Phú Yên HSG 9 Quảng Nam HSG 9 Quảng Ngãi HSG 9 Quảng Ninh HSG 9 Sơn La HSG 9 Tây Ninh HSG 9 Thanh Hóa HSG 9 Thừa Thiên Huế HSG 9 Tiền Giang HSG 9 TPHCM HSG 9 Trà Vinh HSG 9 Vĩnh Long HSG 9 Vĩnh Phúc HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lăng Hồng Nguyệt Anh Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Hồng Phong Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Nhất Huy Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Song Thiên Long Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 10/3 Đắk Lắk Olympic 11 Olympic 12 Olympic 23/3 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp Ôn Thi 10 PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Quang Đạt Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2008-2009 TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST 2022-2023 TST An Giang TST Bà Rịa Vũng Tàu TST Bắc Giang TST Bắc Ninh TST Bến Tre TST Bình Định TST Bình Dương TST Bình Phước TST Bình Thuận TST Cà Mau TST Cần Thơ TST Cao Bằng TST Đà Nẵng TST Đắk Lắk TST Đắk Nông TST Đồng Nai TST Đồng Tháp TST Gia Lai TST Hà Nam TST Hà Tĩnh TST Hải Dương TST Hải Phòng TST Hòa Bình TST Khánh Hòa TST Lạng Sơn TST Long An TST Nam Định TST Nghệ An TST Ninh Bình TST Phú Yên TST PTNK TST Quảng Nam TST Quảng Ngãi TST Quảng Ninh TST Sơn La TST Thái Nguyên TST Thanh Hóa TST Thừa Thiên Huế TST Tiền Giang TST TPHCM TST Trà Vinh TST Vĩnh Long TST Vĩnh Phúc Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 An Giang Tuyển Sinh 10 Bà Rịa Vũng Tàu Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bạc Liêu Tuyển Sinh 10 Bắc Ninh Tuyển Sinh 10 Bến Tre Tuyển Sinh 10 Bình Định Tuyển Sinh 10 Bình Dương Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Bình Thuận Tuyển Sinh 10 Cà Mau Tuyển Sinh 10 Cao Bằng Tuyển Sinh 10 Chuyên SPHN Tuyển Sinh 10 Đà Nẵng Tuyển Sinh 10 Đắk Lắk Tuyển Sinh 10 Đắk Nông Tuyển Sinh 10 Đồng Nai Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Gia Lai Tuyển Sinh 10 Hà Giang Tuyển Sinh 10 Hà Nam Tuyển Sinh 10 Hà Nội Tuyển Sinh 10 Hà Tĩnh Tuyển Sinh 10 Hải Dương Tuyển Sinh 10 Hải Phòng Tuyển Sinh 10 Hòa Bình Tuyển Sinh 10 Khánh Hòa Tuyển Sinh 10 KHTN Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Nam Định Tuyển Sinh 10 Nghệ An Tuyển Sinh 10 Ninh Bình Tuyển Sinh 10 Phú Yên Tuyển Sinh 10 PTNK Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ngãi Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Sơn La Tuyển Sinh 10 Tây Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 10 Thanh Hóa Tuyển Sinh 10 Thừa Thiên Huế Tuyển Sinh 10 Tiền Giang Tuyển Sinh 10 TPHCM Tuyển Sinh 10 Vĩnh Long Tuyển Sinh 10 Vĩnh Phúc Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Sinh 2022-2023 Tuyển Sinh Chuyên SP TPHCM Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
false
ltr
item
MOlympiad.NET: American Mathematical Monthly Problem - Volume 128, 2021
American Mathematical Monthly Problem - Volume 128, 2021
MOlympiad.NET
https://www.molympiad.net/2022/03/amm-2021.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2022/03/amm-2021.html
true
2506595080985176441
UTF-8
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Table of Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED
PLEASE FOLLOW THE INSTRUCTIONS TO VIEW THIS CONTENT
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
XIN HÃY LÀM THEO HƯỚNG DẪN ĐỂ XEM NỘI DUNG NÀY
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN