[Shortlists] International Mathematical Olympiad 1999


  1. Let ABC be a triangle and $M$ be an interior point. Prove that \[ \min\{MA,MB,MC\}+MA+MB+MC < AB+AC+BC.\]
  2. A circle is called a separator for a set of five points in a plane if it passes through three of these points, it contains a fourth point inside and the fifth point is outside the circle. Prove that every set of five points such that no three are collinear and no four are concyclic has exactly four separators.
  3. A set $ S$ of points from the space will be called completely symmetric if it has at least three elements and fulfills the condition that for every two distinct points $ A$ and $ B$ from $ S$, the perpendicular bisector plane of the segment $ AB$ is a plane of symmetry for $ S$. Prove that if a completely symmetric set is finite, then it consists of the vertices of either a regular polygon, or a regular tetrahedron or a regular octahedron.
  4. For a triangle $T = ABC$ we take the point $X$ on the side $(AB)$ such that $AX/AB=4/5$, the point $Y$ on the segment $(CX)$ such that $CY = 2YX$ and, if possible, the point $Z$ on the ray ($CA$ such that $\widehat{CXZ} = 180 - \widehat{ABC}$. We denote by $\Sigma$ the set of all triangles $T$ for which $\widehat{XYZ} = 45$. Prove that all triangles from $\Sigma$ are similar and find the measure of their smallest angle.
  5. Let $ABC$ be a triangle, $\Omega$ its incircle and $\Omega_{a}, \Omega_{b}, \Omega_{c}$ three circles orthogonal to $\Omega$ passing through $(B,C),(A,C)$ and $(A,B)$ respectively. The circles $\Omega_{a}$ and $\Omega_{b}$ meet again in $C'$; in the same way we obtain the points $B'$ and $A'$. Prove that the radius of the circumcircle of $A'B'C'$ is half the radius of $\Omega$.
  6. Two circles $\Omega_{1}$ and $\Omega_{2}$ touch internally the circle $\Omega$ in M and N and the center of $\Omega_{2}$ is on $\Omega_{1}$. The common chord of the circles $\Omega_{1}$ and $\Omega_{2}$ intersects $\Omega$ in $A$ and $B$. $MA$ and $MB$ intersects $\Omega_{1}$ in $C$ and $D$. Prove that $\Omega_{2}$ is tangent to $CD$.
  7. The point $M$ is inside the convex quadrilateral $ABCD$, such that $MA = MC$, $\widehat{AMB} = \widehat{MAD} + \widehat{MCD}$ and $\widehat{CMD} = \widehat{MCB} + \widehat{MAB}$. Prove that $AB \cdot CM = BC \cdot MD$ and $BM \cdot AD = MA \cdot CD.$
  8. Given a triangle $ABC$. The points $A$, $B$, $C$ divide the circumcircle $\Omega$ of the triangle $ABC$ into three arcs $BC$, $CA$, $AB$. Let $X$ be a variable point on the arc $AB$, and let $O_{1}$ and $O_{2}$ be the incenters of the triangles $CAX$ and $CBX$. Prove that the circumcircle of the triangle $XO_{1}O_{2}$ intersects the circle $\Omega$ in a fixed point.

Number Theory

  1. Find all the pairs of positive integers $(x,p)$ such that p is a prime, $x \leq 2p$ and $x^{p-1}$ is a divisor of $ (p-1)^{x}+1$.
  2. Prove that every positive rational number can be represented in the form $\dfrac{a^{3}+b^{3}}{c^{3}+d^{3}}$ where $a,b,c,d$ are positive integers.
  3. Prove that there exists two strictly increasing sequences $(a_{n})$ and $(b_{n})$ such that $a_{n}(a_{n}+1)$ divides $b^{2}_{n}+1$ for every natural n.
  4. Denote by S the set of all primes such the decimal representation of $\frac{1}{p}$ has the fundamental period divisible by 3. For every $p \in S$ such that $\frac{1}{p}$ has the fundamental period $3r$ one may write \[\frac{1}{p}=0,a_{1}a_{2}\ldots a_{3r}a_{1}a_{2} \ldots a_{3r} \ldots , \] where $r=r(p)$; for every $p \in S$ and every integer $k \geq 1$ define $f(k,p)$ by \[ f(k,p)= a_{k}+a_{k+r(p)}+a_{k+2.r(p)}\] a) Prove that $S$ is infinite. b) Find the highest value of $f(k,p)$ for $k \geq 1$ and $p \in S$
  5. Let $n,k$ be positive integers such that n is not divisible by 3 and $k \geq n$. Prove that there exists a positive integer $m$ which is divisible by $n$ and the sum of its digits in decimal representation is $k$.
  6. Prove that for every real number $M$ there exists an infinite arithmetic progression such that:
    • each term is a positive integer and the common difference is not divisible by 10
    • the sum of the digits of each term (in decimal representation) exceeds $M$.


  1. Let $n \geq 2$ be a fixed integer. Find the least constant $C$ such the inequality \[\sum_{i < j} x_{i}x_{j} \left(x^{2}_{i}+x^{2}_{j} \right) \leq C \left(\sum_{i}x_{i} \right)^4\] holds for any $x_{1}, \ldots ,x_{n} \geq 0$ (the sum on the left consists of $\binom{n}{2}$ summands). For this constant $C$, characterize the instances of equality.
  2. The numbers from 1 to $n^2$ are randomly arranged in the cells of a $n \times n$ square ($n \geq 2$). For any pair of numbers situated on the same row or on the same column the ratio of the greater number to the smaller number is calculated. Let us call the characteristic of the arrangement the smallest of these $n^2\left(n-1\right)$ fractions. What is the highest possible value of the characteristic ?
  3. A game is played by $n$ girls ($n \geq 2$), everybody having a ball. Each of the $\binom{n}{2}$ pairs of players, is an arbitrary order, exchange the balls they have at the moment. The game is called nice nice if at the end nobody has her own ball and it is called tiresome if at the end everybody has her initial ball. Determine the values of $n$ for which there exists a nice game and those for which there exists a tiresome game.
  4. Prove that the set of positive integers cannot be partitioned into three nonempty subsets such that, for any two integers $x,y$ taken from two different subsets, the number $x^2-xy+y^2$ belongs to the third subset.
  5. Find all the functions $f: \mathbb{R} \mapsto \mathbb{R}$ such that \[f(x-f(y))=f(f(y))+xf(y)+f(x)-1\] for all $x,y \in \mathbb{R} $.
  6. For $n \geq 3$ and $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ given real numbers we have the following instructions:
    • place out the numbers in some order in a ring;
    • delete one of the numbers from the ring;
    • if just two numbers are remaining in the ring: let $S$ be the sum of these two numbers. Otherwise, if there are more the two numbers in the ring, replace Afterwards start again with the step (2).
    Show that the largest sum $S$ which can result in this way is given by the formula \[S_{max}= \sum^n_{k=2} \begin{pmatrix} n -2 \\ [\frac{k}{2}] - 1\end{pmatrix}a_{k}.\]


  1. Let $n \geq 1$ be an integer. A path from $(0,0)$ to $(n,n)$ in the $xy$ plane is a chain of consecutive unit moves either to the right (move denoted by $E$) or upwards (move denoted by $N$), all the moves being made inside the half-plane $x \geq y$. A step in a path is the occurence of two consecutive moves of the form $EN$. Show that the number of paths from $(0,0)$ to $(n,n)$ that contain exactly $s$ steps $(n \geq s \geq 1)$ is \[\frac{1}{s} \binom{n-1}{s-1} \binom{n}{s-1}.\]
  2. If a $5 \times n$ rectangle can be tiled using $n$ pieces like those shown in the diagram, prove that $n$ is even. Show that there are more than $2 \cdot 3^{k-1}$ ways to file a fixed $5 \times 2k$ rectangle $(k \geq 3)$ with $2k$ pieces. (symmetric constructions are supposed to be different.)
  3. A biologist watches a chameleon. The chameleon catches flies and rests after each catch. The biologist notices that:
    • the first fly is caught after a resting period of one minute;
    • the resting period before catching the $2m^\text{th}$ fly is the same as the resting period before catching the $m^\text{th}$ fly and one minute shorter than the resting period before catching the $(2m+1)^\text{th}$ fly;
    • when the chameleon stops resting, he catches a fly instantly.
    a) How many flies were caught by the chameleon before his first resting period of $9$ minutes in a row?   b) After how many minutes will the chameleon catch his $98^\text{th}$ fly? c) How many flies were caught by the chameleon after 1999 minutes have passed?
  4. Let $A$ be a set of $N$ residues $\pmod{N^{2}}$. Prove that there exists a set $B$ of of $N$ residues $\pmod{N^{2}}$ such that $A + B = \{a+b|a \in A, b \in B\}$ contains at least half of all the residues $\pmod{N^{2}}$.
  5. Let $n$ be an even positive integer. We say that two different cells of a $n \times n$ board are neighboring if they have a common side. Find the minimal number of cells on the $n \times n$ board that must be marked so that any cell (marked or not marked) has a marked neighboring cell.
  6. Suppose that every integer has been given one of the colours red, blue, green or yellow. Let $x$ and $y$ be odd integers so that $|x| \neq |y|$. Show that there are two integers of the same colour whose difference has one of the following values: $x,y,x+y$ or $x-y$.
  7. Let $p > 3$ be a prime number. For each nonempty subset $T$ of $\{0,1,2,3, \ldots , p-1\}$, let $E(T)$ be the set of all $(p-1)$-tuples $(x_1, \ldots ,x_{p-1} )$, where each $x_i \in T$ and $x_1+2x_2+ \ldots + (p-1)x_{p-1}$ is divisible by $p$ and let $|E(T)|$ denote the number of elements in $E(T)$. Prove that \[|E(\{0,1,3\})| \geq |E(\{0,1,2\})|\] with equality if and only if $p = 5$.
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...


Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên Sư Phạm Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Dương Quỳnh Châu Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 Bắc Giang HSG 10 Thái Nguyên HSG 10 Vĩnh Phúc HSG 11 HSG 11 Bắc Giang HSG 11 Lạng Sơn HSG 11 Thái Nguyên HSG 11 Vĩnh Phúc HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 Bắc Giang HSG 12 Bình Phước HSG 12 Đồng Tháp HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Quảng Nam HSG 12 Quảng Ninh HSG 12 Thái Nguyên HSG 12 Vĩnh Phúc HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 Bắc Giang HSG 9 Bình Phước HSG 9 Đồng Tháp HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Quảng Nam HSG 9 Quảng Ninh HSG 9 Vĩnh Phúc HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lăng Hồng Nguyệt Anh Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYM MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Nhất Huy Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 11 Olympic 12 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Quang Đạt Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Chuyên Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST Bắc Giang TST Bình Phước TST Đồng Tháp TST Lạng Sơn TST Long An TST Quảng Nam TST Quảng Ninh TST Thái Nguyên TST Vĩnh Phúc Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 10 Vĩnh Phúc Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2011-2022 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
MOlympiad.NET: [Shortlists] International Mathematical Olympiad 1999
[Shortlists] International Mathematical Olympiad 1999
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED